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Long ducts (or pipes) composed of transpiring (e.g. porous) walls are at the root
of numerous industrial devices for species separation, as tangential filtration or
membrane desalination. Similar configurations can also be involved in fluid supply
systems, as irrigation or biological fluids in capillaries. A transverse leakage (or
permeate flux), the strength of which is assumed to depend linearly on local pressure
(as in Starling’s law for capillary), takes place through permeable walls. All other
dependences, as osmotic pressure or partial fouling due to polarization of species
concentration, are neglected. To analyse this open problem we consider the simplest
situation: the steady laminar flow in a two-dimensional channel composed of two
symmetrical porous walls.

First, dimensional analysis helps us to determine the relevant parameters. We
then revisit the Berman problem that considers a uniform crossflow (i.e. pressure-
independent leakage). We expand the solution in a series of Rt , the transverse Reynolds
number. We note this series has a rapid convergence in the considered range of Rt

(i.e. Rt � O(1)). A particular method of variable separation then allows us to derive
from the Navier–Stokes equations two new ordinary differential equations (ODE),
which correspond to first and second orders in the development in Rt , whereas the
zero order recovers the Regirer linear theory. Finally, both new ODEs are used to
study the occurrence of two undesirable events in the filtration process: axial flow
exhaustion (AFE) and crossflow reversal (CFR). This study is compared with a
numerical approach.

1. Introduction
Species separation is the object of numerous industrial processes. Schematically,

a permeable membrane supposed to retain the concerned species is used, and in a
very popular set-up (tangential filtration) the membrane composes the wall of a duct.
Then, the species remains in the carried (or axial) flow, while the purified fluid leaves
the duct by crossing the membrane. In practice, those ducts are cylindrical pipes,
but for the reasons discussed below the present analysis considers a two-dimensional
channel composed of two identical homogeneous parallel walls, separated by spacing
2d .

Modelling the strength of the flow that crosses the permeable walls is not a trivial
task, because in principle it depends on different local quantities. We first have in
mind the pressure difference between both sides of the wall. The crossflow should
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Figure 1. Sketch of steady two-dimensional channel flow with pressure-dependent suction at
the walls.

also depend on species concentration through osmotic pressure. Another concept
linked with species rejection at the permeable wall is the so-called polarization of
concentration at the wall. The latter phenomenon can be so intense that the membrane
filtration properties are strongly affected (see Bacchin, Aimar & Field (2006) for a
review of those complex features). The problem addressed in the paper, however,
focuses on the first dependence; hence Uc(z), the velocity normal to the wall (i.e.
the crossflow), depends linearly on the inner pressure at the membrane, denoted
Pc(z), while the outer pressure is assumed to be uniform, and chosen as the reference
pressure (i.e. Pext =0). The relationship between normal velocity and local pressure is

Uc(z) = Pc(z)/I0, (1.1)

where I0, the so-called wall resistance, is a uniform (constant) quantity. Note also
that osmotic pressure is absent from (1.1), and in the rest of the paper the fluid is
assumed pure, incompressible and with constant properties. Figure 1 summarizes the
channel geometry and problem assumptions.

Even with these drastic simplifications, the resulting problem is considered open,
although the state of the art contains of a very few partial solutions. Before discussing
the state of the art, we must define an important non-dimensional parameter, the
transverse Reynolds number, as

Rt ≡ dρ0Uc|in/µ0 = dρ0Pc|in/(µ0I0), (1.2)

where ρ0 and µ0 denote fluid density and dynamic viscosity. Subscript zero reminds
us the concerned quantity is uniform, ‘|in’ indicates that the data are those at channel
entrance, and ‘c’ denotes a quantity relative to crossflow.

Berman (1953) gave an exact solution to a different problem: a channel with a
uniform crossflow (Uc(z) = Uc|in) at the walls was considered. Now, for a particular
value of Rt (denoted Riso

t , with Riso
t ≈ 1.3107), inertial effects exactly compensate for

viscous effects, in such a way that the flow remains isobaric along the whole channel
wall (i.e. Pc(z) = Pc|in). Therefore, for this particular value of Rt , Berman provided us
with the exact solution of our original problem.

Let us consider Rt = 0, another particular value of Rt . It is little known in the
western literature that the solution for Rt = 0 was first published by Regirer (1960).
This exact solution has been rediscovered independently several times since.

Galowin, Fletcher & DeSantis (1974) showed that inertial effects can dominate, and
lead to a pressure increase due to suction at the walls. Although slightly inconsistent
(as discussed below), their derivation permitted a relevant interpretation of their
experimental observations.
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The paper aims to bridge the gap between these theoretical approaches. Its base line
is the Berman exact solution in a channel, although filtration in a tube is more relevant
for standard applications. For the time being, it is preferable to develop a theory in
the context of channel flow for the following reasons: (i) mathematical developments
are easier in plane geometry; (ii) a Berman solution (labelled Type I in literature)
continuously exists for all Rt in a channel (Robinson 1976); (iii) the stability of this
solution is not called into question for Rt � 6 (Zaturska, Drazin & Banks 1988);
(iv) a solution of Type I rapidly develops from parabolic inlet conditions if Rt � 4;
more precisely, a relative error less than 5 % in pressure variation is introduced if
inlet boundary conditions are of Poiseuille type instead of Berman type (Gupta &
Levy 1976; see also Brady 1984).

2. Dimensional analysis and basic properties
As defined in § 1, our problem obviously depends on seven independent dimensional

parameters: {d , ρ0, µ0, I0, L, Pin, Win}. The last three parameters are, respectively,
the channel length, the inlet mean pressure and the inlet mean axial velocity. The
application of dimensional analysis leads us to consider four independent numbers
only; we shall define them after introducing the mathematical model and the following
auxiliary quantities. We first define Uin, the order of magnitude of the transverse
velocity, as Uin = Pin/I0, while the dead-end length, denoted Lde, corresponds to
Lde = Wind/Uin. The latter length gives the distance from the inlet where axial flow
exhaustion would occur, if the flow were isobaric.

Our study starts from the steady Navier–Stokes equations that govern the motion
of a uniform property fluid in the domain Ω = {−d < X <d} × {0 <Z <L}. The
equations read in dimensional form

∇·V = 0 in Ω, (2.1)

(V ·∇)V = − 1

ρ0

∇P +
µ0

ρ0

∆V in Ω, (2.2)

together with the boundary conditions on the walls (n is the outer normal unit vector)

n·V (X = ±d, Z) = P (X = ±d, Z)/I0, V − (n·V (X = ±d, Z)) n = 0. (2.3)

It is worth noting that we do not yet provide any boundary conditions at the
inlet or outlet. We shall impose inlet conditions of the Berman type (see below).
For the range of the standard parameters relative to filtration (i.e. Rt � O(1)), the
results of § 5 indicate that Hagen–Poiseuille flow–taken as inlet conditions–does not
produce important modifications. Let us now introduce the following non-dimensional
unknowns and variables, used throughout the paper

u =
U

Uin

, w =
W

Win

, p =
P

Pin

, x =
X

d
, z =

Z

Lde

. (2.4)

Note that the choice retained here implies that the typical magnitude of all non-
dimensional variables is expected to be one. On the other hand, the four independent
numbers we have selected to characterize the problem are

Rt =
ρ0Uind

µ0

, λ =
L

Lde

, α =

(
µ0I0W

2
in

P 2
ind

)1/2

, β =
µ0

I0d
. (2.5)

Number Rt , the transverse Reynolds number, compares inertial to viscous effects.
Let us give more detail about this classic sentence. For reasons of symmetry, the
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channel mid-line (i.e. the symmetry axis x = 0) is a trajectory of the laminar flow (the
inlet conditions being indeed symmetrical). Suppose the flow along this trajectory
stops at Lde, the point of isobaric exhaustion. On the one hand, neglecting viscous
effects and invoking the Bernoulli theorem, we observe a pressure increase of the order
of 0.5ρ0W

2
in. On the other hand, supposing the flow to be close to a Hagen–Poiseuille

flow, we estimate the viscous pressure drop at −3µ0WinLde/d
2 or −3µ0W

2
in/(Uind).

The comparison would invite us to state that inertial effects dominate viscous effects
when Rt > 6. As a matter of fact, in the Berman problem (see below) the threshold of
this event arises at Riso

t ≈ 1.3107.
Number λ is the channel length divided by the dead-end length. At first glance,

condition λ� 1 should prevent the actual flow from axial flow exhaustion.
The significance of the number α becomes clearer when we compare the viscous

pressure drop arising at the point of isobaric exhaustion with the inlet pressure. As
a result, the ratio of −3µ0W

2
in/(Uind) to Pin gives α2. If α � O(1), viscous pressure

drop is expected to have a serious influence on suction intensity. The reason why we
choose α instead of α2 will appear later, when the Regirer theory will be described.

As for number β , the reduced wall conductance, it is interpreted from the study of
the flow inside the wall. Assume the Darcy law governs the transverse flow inside the
wall of thickness e. It relates pressure drop to superficial velocity, and obviously gives

Pc(z) = µ0eUc(z)/KD which leads to I0 = µ0e/KD, (2.6)

where KD is the Darcy permeability, which has an order of magnitude related to the
pore sectional area. This rough approach allows us to estimate number β as

β ≡ µ0/(I0d) = KD/(ed). (2.7)

Hence, it is evident that β is a very small quantity in most filtration processes.
Note that other authors use the longitudinal Reynolds number (or filtration

Reynolds number), defined by Rl = ρ0Wind/µ0 . It reads Rl = Rtα/
√

β here.
Let us turn now to the dimensionless form of the Navier–Stokes equations. Applying

change of unknowns and variables (2.4) and introducing numbers (2.5) we have to
solve the following non-dimensional system in ω = {0 <x < 1} × {0 <z < λ}; domain
ω now accounts for the plane of symmetry hypothesis

ux + wz = 0, (2.8)

−px = βD[u,w;Rt ,β/α2](u), (2.9)

−pz = α2D[u,w;Rt ,β/α2](w), (2.10)

where D[u,w;Rt ,β/α2] is the differential operator (acting below on the scalar function φ)

D[u,w;Rt ,β/α2](φ) = Rt (uφx + wφz) − (φxx + βφzz/α
2). (2.11)

The former boundary conditions now become in non-dimensional form

u(0, z) = 0, u(1, z) = p(1, z), wx(0, z) = 0, w(1, z) = 0. (2.12)

A straightforward consequence of (2.9)–(2.11) can be established having in mind
that u and w possess the same magnitude in non-dimensional form, as well as their
different variations. Therefore, we can state in some norm, denoted ‖‖,

‖px‖ ≈ β‖pz‖/α2. (2.13)
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Consequently, Prandtl approximations are valid in the limit (Rt/Rl) −→ 0 (i.e. β =0
and non-vanishing α). In this case, λ becomes a parameter of secondary importance:
λ must be large enough to observe the predicted events (§ 5).

Another consequence can be derived from (2.8). Let us define q(z), the non-

dimensional mean axial velocity (or normalized flowrate) by q(z) =
∫ 1

0
w(x, z) dx.

Accordingly with the selected normalization, we have q(0) = 1. Performing the
transverse partial integration of mass conservation law (2.8), we obtain

q ′(z) ≡
∫ 1

0

wz(x, z) dx = −
∫ 1

0

ux(x, z) dx = − [u]10 = −uc(z) = −pc(z). (2.14)

Hence, the variation rate of the mean velocity is equal to the pressure at the wall.
Let us now come to the linear theory of Regirer (1960) which is concerned with the

particular case {Rt = 0, β = 0} and looks for a solution with separation of variables.
Thus, Regirer postulates p(x, z) =pc(z) (invoking the Prandtl approximation) and
w(x, z) = q(z)θ(x). Reported in (2.10), and after elementary calculus, these hypotheses
give

θ(x) = 3(1 − x2)/2 together with −p′
c = 3α2q. (2.15)

After eliminating pressure at the wall, we obtain the Regirer equation

q ′′ − 3α2q = 0. (2.16)

For given inlet pressure and flowrate {i.e. q(0) = 1 and q ′(0) = −1}, the Regirer
equation leads us to the following exact solution of the Navier–Stokes equations
in 0 � z � λ

q(z) = cosh(αz
√

3) − (α
√

3)−1 sinh(αz
√

3), (2.17)

p(z) = −q ′(z) = −α
√

3 sinh(αz
√

3) + cosh(αz
√

3). (2.18)

The purpose of the next two sections is to provide us with ordinary differential
equations (ODE) that extend the Regirer equation (2.16) to Rt 	= 0.

3. The Berman problem revisited
The Berman problem consists of a channel flow with a uniform crossflow (i.e.

pressure-independent transpiration). In this section, it is set u(1, z) = 1, ∀z (for an
extension to more elaborate boundary conditions at a porous wall, see Chellam &
Liu 2006). In consequence, ẑAFE , the distance of axial flow exhaustion (AFE) (i.e.
q(z = ẑAFE ) = 0), is easily found from mass conservation law. This event occurs at
ẑAFE = 1 exactly. This is the reason why Berman proposed to search for an exact
solution with a stream function (denoted ψ(x, z)) and the related velocities in the
form

ψ(x, z) = (1 − z)B(x), u ≡ −ψz = B(x), w ≡ ψx = (1 − z)B ′(x). (3.1)

Substituted into equations (2.9)–(2.10), this hypothesis gives

−px = β[RtBB ′ − B ′′], (3.2)

−pz = α2[Rt (BB ′′ − B ′2) − B ′′′], (3.3)

while mass conservation law (2.8) is satisfied automatically. From (3.2), we obtain
pxz = 0, and deduce that the right-hand side of (3.3) is constant. More precisely,
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Berman obtained the following ordinary differential equation,

Rt (BB ′′ − B ′2) − B ′′′ = K(Rt ) in 0 < x < 1, (3.4)

where constant K(Rt ), the so-called Berman’s constant, is an unknown to be calculated
from the boundary conditions in excess. Note from (3.3) that −α2K(Rt ) gives the
axial pressure variation. From (3.1), the boundary conditions imposed on ODE (3.4)
are

B(0) = 0, B ′′(0) = 0, B(1) = 1, B ′(1) = 0. (3.5)

The literature proposes powerful numerical methods (e.g. see Terrill 1964) for
tabulating the solution of the Berman problem (3.4) complemented by four boundary
conditions (3.5). One can claim that a 6-digit precision is easily obtained with 500
equidistant nodes in interval 0 <x < 1. It has been shown that the solution is unique
in the range of Rt concerned (more precisely, the Berman problem has a unique
solution if Rt < 12.165), which can easily be approximated by an analytic expansion
of the solution in a series of Rt (Terrill & Shrestha 1965; Rudraiah & Dinesh 2004;
for recent developments of the method). Thus, these authors write the unknowns as

B(x) ≡ F (x; Rt ) ≡
n=∞∑
n=0

1

n!
fn(x) Rn

t , K(Rt ) =

n=∞∑
n=0

1

n!
kn Rn

t . (3.6)

Then, substituting expansions (3.6) into ODE (3.4), and since ODE (3.4) is valid for
every Rt , we obtain the following cascade of trivial differential equations

f ′′′
0 = −k0, (3.7)

f ′′′
1 = f0f

′′
0 − f ′

0
2 − k1, (3.8)

f ′′′
n = n!

j=n−1∑
j=0

[j!(n − 1 − j )!]−1[fjf
′′
n−1−j − f ′

jf
′
n−1−j ] − kn, n > 1. (3.9)

The use of symbolic calculus makes the integration of (3.7)–(3.9) straightforward.
In a limited range of Rt (say −4 � Rt � 4), both series (3.6) are rapidly
convergent. We define the approximate Berman’s constant truncated at order N as
K(Rt ; N) ≡

∑n= N

n= 0 (n!)−1 kn Rn
t . To fix the idea about the accuracy of this development,

below we report Riso
t (N), the critical value of Rt that renders the flow isobaric (i.e.

K(Riso
t (N); N) = 0). We find

Riso
t (N = 1) = 1.29630, Riso

t (N = 2) = 1.31101, Riso
t (N = 3) = 1.31075,

while the 5-digit precision numerical computation gives Riso
t (Num.) = 1.31067 . Lastly,

let us write the terms of the series up to N = 2.

f0 =
3x

2

(
1 − x2

3

)
, k0 = 3, (3.10)

f1 =
x

280
(−x6 + 3x2 − 2), k1 = −81

35
, (3.11)

f2 =
3x

140

(
x10

990
− x8

36
+

x6

70
+

73x2

1155
− 703

13860

)
, k2 =

468

13475
. (3.12)

These data substituted in the different truncations of expansions (3.6) will provide
us with the inlet boundary conditions consistent with the approximate solutions we
shall derive in the next part. For moderate Rt , note furthermore that these profiles
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correspond to slight (but not negligible) deviations from Hagen–Poiseuille flow, the
latter being indeed the limit of either Berman flow for Rt → 0, or Regirer flow for
α → 0.

4. Analysis of channel flow with pressure-dependent suction
We now come to our original problem. Here, we set u(x =1, z) = p(x =1, z), ∀z.

We shall take profit of the fact that the Berman solution is valid for any channel
length (as soon as the entry conditions are of Berman type). In other words, between
an entry located at z and an output at z + dz, the Berman solution could hold
for r(z), the local transverse Reynolds number, defined as r(z) = ρ0Uc(z)d/µ0, or
r(z) = pc(z)ρ0Pind/(I0µ0) = −q ′(z)Rt . Thus, let us look for a solution belonging to the
class of the streamfunctions that satisfies the following form of variable separation:

ψ(x, z) = q(z)F (x; r(z)) with r(z) = pc(z)Rt = −q ′(z)Rt, (4.1)

where the transverse flow profile F (x; r) is the Berman solution (3.6) obtained with the
local transverse Reynolds number r(z) = −q ′(z)Rt . The velocity components become

u(x, z) ≡ −ψz = −q ′F + Rtqq ′′Fr, w(x, z) ≡ ψx = qFx. (4.2)

We easily confirm that q(z) is the normalized flowrate (or mean velocity),
and that the pressure-dependent boundary condition is plainly satisfied, since
u(x = 1, z) = −q ′(z) = pc(z). Substituting expressions (4.2) into the Navier–Stokes
equation (2.10), we obtain

pz = α2q
{
K[r(z)] + R2

t qq ′′[FrFxx − FxFxr ]
}

− βE(x, z), (4.3)

where the differential expression E(x, z) is given by

E(x, z) = q ′′Fx − Rt [2q ′q ′′ − qq ′′′]Fxr + R2
t qq ′′2Fxrr . (4.4)

From PDE (4.3), the validity of which is extended to x = 1, we establish

pz(x = 1, z) ≡ −p′
c(z) = α2qK[r(z)], (4.5)

since other terms of (4.3) obviously vanish at x = 1. A particularly interesting
differential expression on q can now be obtained after eliminating pc between (2.14)
and (4.5)

q ′′ = α2qK[−Rtq
′(z)] or q ′′ = α2q

n=∞∑
n=0

(n!)−1 kn (−q ′)nRn
t . (4.6)

Let us now consider the conditions that render a truncation of differential expression
(4.6) (i.e. an ODE) equivalent to Navier–Stokes equations. Inspection of PDE
(4.3) indicates that the condition β =0 allows us to cancel the x-dependence
contained in E(x, z), and furthermore makes the pressure independent of x (i.e.
p(x, z) = pc(z) = −q ′(z)). The only remaining x-dependence is in (FrFxx − FxFxr ),
evidently pushed away to the second order in Rt . Consequently, if we restrict the
expansion in Rt to zero and first orders, PDE (4.3) degenerates (if β = 0) into the
following two ODEs

q ′′ = α2q

n=N∑
n=0

(n!)−1 kn (−q ′)nRn
t , forN = 0, N = 1. (4.7)
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The ODE for N = 0 is nothing but the Regirer equation (2.16), while the ODE for
N = 1 is new. The latter reads

q ′′ = α2q(k0 − k1Rtq
′). (4.8)

It is worthy of note that Galowin et al. (1974) endeavoured to take account of inertial
effects within Regirer theory; by assuming a Hagen–Poiseuille profile all along the
duct and integrating on the transverse coordinate, they obtained an ODE of the same
form as ODE (4.8). As a result, the present theory shows that their derivation is,
however, not consistent with the spirit of a development at the first order in Rt , since
their procedure would find for a two-dimensional channel the value −12/5 in place
of k1 (k1 = −81/35). It is nevertheless noticeable that the discrepancy between their
heuristic approach and the present one is quite small (only a 5 % error).

Lastly, we inspect what happens at the second order in PDE (4.3), i.e. we now
envisage extending ODEs (4.7) to N = 2. At the second order, PDE (4.3) becomes

q ′′(1 − g0(x)α2R2
t q

2
)

= k0α
2q

(
1 − k1

k0

Rtq
′ +

k2

2k0

R2
t q

′2
)

, (4.9)

where g0(x) ≡ f1f
′′
0 − f ′

1f
′
0 = [−15x8 + 21x6 + 9x4 − 21x2 + 6]/560. Evidently, the

second-order expression (4.9) is not a true ODE. However, the departure from an
ODE remains small because, as long as α2R2

t ≈ O(1), the quantity ‖g0‖∞ ≈ 10−2 has
always to be compared with 1 (whereas this rationale is not valid for the second-order
term in the right-hand side of (4.9)). Therefore, under those conditions, we stress the
fact that the ODE,

q ′′ = k0α
2q

(
1 − k1

k0

Rtq
′ +

k2

2k0

R2
t q

′2
)

, (4.10)

is able to govern the flowrate in the duct within a few per cent accuracy. Note, finally,
ODE (4.10) is nothing more than differential expression (4.6) truncated after the term
n=2. Next, we present an application of the present analysis for moderate Rt .

5. Axial flow exhaustion (AFE) vs. crossflow reversal (CFR)
In practice, the experiments in filtration are operated to prevent the membrane

flow from two unwanted events. On the one hand, too long a channel leads to
the extinction of the axial flow: this event – called ‘axial flow exhaustion’ (AFE)
already – arises at the exhaustion length, noted ẑAFE (and measured in units of dead-
end length Lde = Wind/Uin). On the other hand, a long enough channel experiences a
strong viscous drop of the membrane inner pressure: if the inner pressure becomes
lower than the external pressure, suction stops, and injection takes place. In other
words, a ‘crossflow reversal’ (CFR) can arise at a distance called ẑCFR hereinafter
(in capillary flow, ẑCFR might be interpreted as the locus where the transition from
arterial system to venous side occurs). Parameter λ is now assumed large enough to
permit the occurrence of these events.

For Rt =0, the Regirer solution (2.17)–(2.18) predicts

ẑAFE = (α
√

3)−1tanh−1(α
√

3), ẑCFR = (α
√

3)−1tanh−1[(α
√

3)−1]. (5.1)

If α < 1/
√

3, ẑAFE is greater than 1, and CFR never arises (ẑCFR being not defined
in (5.1)). In other words, AFE is the only dangerous event. Conversely, if α > 1/

√
3,

ẑCFR is defined in (5.1). It is a decreasing function of α (from infinity to zero), while
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Figure 2. Respective domains where axial flow exhaustion (denoted AFE) or crossflow
reversal (CFR) is the event that threatens filtration. Both domains are separated by a curve

that joins point {Rt = 0, α = 1/
√

3} and point {Rt = Riso
t , α = ∞}. Four approximations of this

curve are plotted; two results from the ODEs obtained for N =1 and N = 2; the other two
come from numerical simulations with different entry flows of Berman or Hagen–Poiseuille
type.

the AFE event never occurs (ẑAFE is not defined in (5.1)). In other words, CFR is
now the event that threatens the filtration process. For the particular value α =1/

√
3,

Regirer (linear) theory predicts that ẑCFR = ẑAFE = ∞. In the latter case, the channel
carries a vanishing flowrate up to infinity, as well as a vanishing suction.

On the other hand, isobaric flow (obtained for Rt = Riso
t ≈ 1.3107 after Berman

theory) has the exhaustion length ẑAFE = 1. In accordance with (3.3)–(3.4), isobaric
flow requires K(Rt ) = 0 (provided that α2 	= ∞). Of course, CFR never occurs for finite
α2.

Let us now consider in the diagram {Rt, α} (figure 2), the occurrence domains of
AFE or CFR. Both domains are expected to be separated by a curve, the locus where
both events occur at the same distance from the inlet (i.e. ẑCFR = ẑAFE ). In figure 2, the
point {Rt = 0, α = 1/

√
3} stands on this separation curve. The line Rt = Riso

t is entirely
situated in the AFE domain, except for the point {Rt = Riso

t , α = ∞} which stands on
the separation curve, too. This is because – for very large α – the flow experiences an
unlimited pressure drop even in the vicinity of Rt = Riso

t . This leads to the appearance
of CFR.

The next problem is to find the separation curve, or how to connect the latter points
in this diagram. The use of the new ODEs will allow us to shed light on this issue.

For simplicity, let us rewrite (4.8) as

q ′′ = aq
(
1 + bq ′) with a = k0α

2, b = −k1Rt/k0. (5.2)

As suggested by the discussion above, the curve searched for is situated in the domain
0 � b < 1. Therefore, p = −q ′ being smaller than one from inlet to ẑCFR , the following
change of unknown is meaningful

y = ln(1 + bq ′). (5.3)
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Substituted in ODE (5.2), this leads to the new form

y ′′−a {(exp(y) − 1} = 0 with the boundary conditions y(0) = ln(1−b), y ′(0) = ab

(5.4)
This new ODE has the advantage of leading to the following integrated form

y ′2/(2a) = ab2/2 + exp(y) − (1 − b) − [y − ln(1 − b)]. (5.5)

By imposing simultaneously both conditions of AFE (y ′ = 0, i.e. q = 0) and CFR
(y =0, i.e. q ′ = 0) on expression (5.5), we obtain the equation of the curve sought for

a =
2

b2
[− ln(1 − b) − b] or α =

k0

√
2

|k1|Rt

[
− ln

(
1 − k1

k0

Rt

)
− k1

k0

Rt

]1/2

. (5.6)

Figure 2 shows several approximations of the separation curve. Two of them results
from both ODEs (i.e. for N = 1, 2). The first one (relative to the ODE obtained with
N = 1) is drawn from analytical expression (5.6) for values up to Rt = −k0/k1. This
curve is complemented with results from the numerical integration of ODE (4.8) for
Rt values higher than −k0/k1. The second separation curve plotted in figure 2 comes
from the numerical integration of ODE (4.10) (i.e. the ODE obtained with N =2). As
expected, it is worth observing that the second-order ODE gives better precision at
high Rt , since the resulting separation curve admits the line Rt = Rt

iso as asymptote.
The second-order ODE (4.10) nearly perfectly performs the junction between points
{Rt = 0, α = 1/

√
3} and {Rt ≈ 1.3107, α = ∞}.

Lastly, numerical computations of the Navier–Stokes equations (NSE) have been
carried out within the context of the Prandtl approximation (β = 0). More details
about the numerical method will be given elsewhere. This approach allows us to
determine numerically the separation curve. Two kinds of results are presented in
figure 2. The first one corresponds to NSE computed with Berman inlet conditions; as
expected, the resulting separation curve almost coincides with the curve labelled ODE
(N = 2). As for the second numerical result, it is concerned with NSE computations
with Hagen–Poiseuille inlet conditions; we observe that the slight discrepancy with
ODE (N = 2) occurring at Rt > 1 remains acceptable. In other words, the present
theory advances predictions that are also useful for entrance conditions more standard
than those of the Berman type.

To sum up, for small and moderate transverse Reynolds numbers, we have proposed
two new ODEs, (4.8) and (4.10), valid for vanishing β . They are intended to partly
fill the gap between Berman and Regirer theories in the range 0 � Rt � 4, which
is supposed to include the standard operational domain in filtration. The present
approximate approach should correspond to the analytical work that has often been
requested by experimentalists: e.g. Mellis, Gill & Belfort (1993) found that the Berman
and Regirer theories were unable to account for their experiments at Rt > 0.5.

The author thanks Professors F. Charbit and P. Guichardon for encouragement
and enlightening discussions.
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